Justification and the Value-Free Ideal in Science

by Fabio Tollon

One of the cornerstones good of science is that its results furnish us with an objective understanding of the world. That is, science, when done correctly, tells us how the world is, independently of how we might feel the world to be (based, for example, on our values or commitments). It is thus central to science, and its claims to objectivity, that values do not override facts. An important feature of this view of science is the distinction between epistemic and non-epistemic values. Simply, epistemic values are those which would seem to make for good science: external coherence, explanatory power, parsimony, etc. Non-epistemic values, on the other hand, concern things like our value judgements, biases, and preferences. In order for science to work well, so the story goes, it should only be epistemic values that come to matter when we assess the legitimacy of a given scientific theory (this is often termed the “value-free ideal”). Thus, a central presupposition underpinning this value-free ideal is that we can in fact mark a distinction between epistemic and non-epistemic values Unfortunately, as with most things in philosophy, things are not that simple.

The first thing to note are the various ways that the value-free ideal plays out in the context of discovery, justification, and application. With respect to the context of discovery, it doesn’t seem to matter if we find that non-epistemic values are operative. While decisions about funding lines, the significance we attach to various theories, and the choice of questions we might want to investigate are all important insofar as they influence where we might choose to look for evidence, they do not determine whether the theories we come up with are valid or not.

Similarly, in the context of application, we could invoke the age-old is-ought distinction: scientific theories cannot justify value-laden beliefs. For example, even if research shows that taller people are more intelligent, it would not follow that taller people are more valuable than shorter people. Such a claim would depend on the value that one ascribes to intelligence beforehand. Therefore, how we go about applying scientific theories is influenced by non-epistemic values, and this is not necessarily problematic.

Thus, in both the context of validation and the context of discovery, we find non-epistemic values to be operative. This, however, is not seen as much of a problem, so long as these values do not “leak” into the context of justification, as it is here that science’s claims to objectivity are preserved. Is this really possible in practice though? Read more »

Should we Disregard the Norms of Assertion in Inter-scientific Discourse? A Response to a False Dilemma

by George Barimah, Ina Gawel, David Stoellger, and Fabio Tollon*

"Assertion" by Ina Gawel
“Assertion” by Ina Gawel

When thinking about the claims made by scientists you would be forgiven for assuming that such claims ought to be true, justified, or at the very least believed by the scientists themselves. When scientists make assertions about the way they think the world is, we expect these assertions to be, on the balance of things, backed up by the local evidence in that field.

The general aim of scientific investigations is that we uncover the truth of the matter: in physics, this might involve discovering a new particle, or realizing that what we once thought was a particle is in fact a wave, for example. This process, however, is a collective one. Scientists are not lone wolves who isolate themselves from other researchers. Rather, they work in coordinated teams, which are embedded in institutions, which have a specific operative logic. Thus, when an individual scientist “puts forward” a claim, they are making this claim to a collection of scientists, those being other experts in their field. These are the kinds of assertions that Haixin Dang and Liam Kofi Bright deal with in a recent publication: what are the norms that govern inter-scientific claims (that is, claims between scientists). When scientists assert that they have made a discovery they are making a public avowal: these are “utterances made by scientists aimed at informing the wider scientific community of some results obtained”. The “rules of the game” when it comes to these public avowals (such as the process of peer-review) presuppose that there is indeed a fact of the matter concerning which kinds of claims are worthy of being brought to the collective attention of scientists. Some assertions are proper and others improper, and there are various norms within scientific discourse that help us make such a determination.

According to Dang and Bright we can distinguish three clusters of norms when it comes to norms of assertions more generally. First, we have factive norms, the most famous of which is the knowledge norm, which essentially holds that assertions are only proper if they are true. Second, we have justification norms, which focus on the reason-responsiveness of agents. That is, can the agent provide reasons for believing their assertion. Last, there are belief norms. Belief norms suggest that for an assertion to be proper it simply has to be the case that the speaker sincerely believes in their assertion. Each norm corresponds to one of the conditions introduced at the beginning of this article and it seems to naturally support the view that scientists should maintain at least one (if not all) of these norms when making assertions in their research papers. The purpose of Dang and Bright’s paper, however, is to show that each of these norms are inappropriate in the case of inter-scientific claims. Read more »

The Science of Empire

by N. Gabriel Martin

1870 Index of Great Trigonometrical Survey of India

Henry Ward Beecher was one of the most prominent and influential abolitionists in the US prior to and during the Civil War. He campaigned against the “Compromise of 1850” in which the new state of California, annexed in the Mexican-American war, was agreed to be made a state without slavery in exchange for tougher laws against aiding fugitive slaves in the non-slavery states. In his argument against the Compromise of 1850, “Shall we compromise,” Beecher argued, according to his biographer Debby Applegate: “No lasting compromise was possible between Liberty and Slavery, Henry argued, for democracy and aristocracy entailed such entirely different social and economic conditions that ‘One or the other must die.’”[1]

In her Voice From the South, African-American author Anna Julia Cooper writes about hearing Beecher say “Were Africa and the Africans to sink to-morrow, how much poorer would the world be? A little less gold and ivory, a little less coffee, a considerable ripple, perhaps, where the Atlantic and Indian Oceans would come together—that is all; not a poem, not an invention, not a piece of art would be missed from the world.”[2]

Opposed to the enslavement of Africans on the one hand, utterly dismissive of their value on the other, for Beecher the problem of slavery would be just as well resolved if Thanos snapped his fingers and disappeared all Africans, as it would if slavery were abolished. Perhaps better. Beecher’s position isn’t atypical of human rights advocates, even today (although the way he puts it would certainly be impolitic today). When charities from Oxfam to Save The Children feature starving African children in their ads, the message isn’t that the impoverishment of those children inhibits their potential as the inheritors of a rich cultural endowment that goes back to the birth of civilisation, mathematics, and monotheism in Ancient Egypt. The message these humanitarian ads send is that the children are suffering and that you have the power to save them. As Didier Fassin writes: “Humanitarian reason pays more attention to the biological life of the destitute and unfortunate, the life in the name of which they are given aid, than to their biographical life, the life through which they could, independently, give a meaning to their own existence.”[3] Read more »

Computer Simulations And The Universe

by Ashutosh Jogalekar

There is a sense in certain quarters that both experimental and theoretical fundamental physics are at an impasse. Other branches of physics like condensed matter physics and fluid dynamics are thriving, but since the composition and existence of the fundamental basis of matter, the origins of the universe and the unity of quantum mechanics with general relativity have long since been held to be foundational matters in physics, this lack of progress rightly bothers its practitioners.

Each of these two aspects of physics faces its own problems. Experimental physics is in trouble because it now relies on energies that cannot be reached even by the biggest particle accelerators around, and building new accelerators will require billions of dollars at a minimum. Even before it was difficult to get this kind of money; in the 1990s the Superconducting Supercollider, an accelerator which would have cost about $2 billion and reached energies greater than those reached by the Large Hadron Collider, was shelved because of a lack of consensus among physicists, political foot dragging and budget concerns. The next particle accelerator which is projected to cost $10 billion is seen as a bad investment by some, especially since previous expensive experiments in physics have confirmed prior theoretical foundations rather than discovered new phenomena or particles.

Fundamental theoretical physics is in trouble because it has become unfalsifiable, divorced from experiment and entangled in mathematical complexities. String theory which was thought to be the most promising approach to unifying quantum mechanics and general relativity has come under particular scrutiny, and its lack of falsifiable predictive power has become so visible that some philosophers have suggested that traditional criteria for a theory’s success like falsification should no longer be applied to string theory. Not surprisingly, many scientists as well as philosophers have frowned on this proposed novel, postmodern model of scientific validation. Read more »