by Ashutosh Jogalekar
We live in a fractured age when many seem to be convinced that their beliefs are right, and that they can never agree with the other side on anything to any degree. Science has always been the best antidote against this bias, because while political truths are highly subjective and subject to the whims of the majority, most scientific truths are starkly objective. You may try to pass a law by majority vote in Congress saying that two and two equals five, or that DNA is not a double helix, but these falsehoods are not going to stay hidden for too long because the bare facts say otherwise. You may keep on denying global warming, but that will not make the warming stop. What makes science different is that its facts are true irrespective of whether you believe they are true.
But combined with this undeniable nature of scientific facts exists a way of doing things that almost seems paradoxical to proclamations about hard scientific truth. That is the essential, never-ending role of doubt, skepticism and uncertainty in the practice of science. Yes, DNA is a double helix, and yes, it almost seems impossible that this fact will someday be overturned, but even then we should not hold the fact as sacrosanct. “Truth” in science, no matter how convincing, is always regarded as provisional and subject to change. Some scientific facts are now so well documented that they approach the status of “truth”, and yet considering them so literally would mean abandoning the scientific method. Seen this way, truth in science can be considered to be an asymptotic limit, one which we can always get closer to but can never definitively reach.
It’s this seemingly paradoxical and yet crucial yin-and-yang aspect of science that I believe is still quite hard to grasp for non-scientists. Niels Bohr would have appreciated the tension. Bohr bequeathed to the world the concept of complementarity. Complementarity means the existence of seemingly opposite ideas that are still required together to explain the world. In the physical world, complementarity was first glimpsed in the behavior of subatomic particles which can sometimes behave as waves and sometime as particles, depending on the experiment.
