The Posthumous Trials of Robert A. Millikan

by David Kordahl

Millikan and EinsteinThe photograph beside this text shows two men standing side by side, both scientific celebrities, both Nobel prizewinners, both of them well-known and well-loved by the American public in 1932, when the picture was taken. But public memory is fickle, and today only the man on the right is still recognizable to most people.

Albert Einstein, Time Magazine’s “Man of the Century,” the father of special and general relativity, has a place in science that remains secure, regardless of what one thinks of his life as a whole. Despite activist efforts at demystification, Einstein the scientist is unblemished by any misgivings about his personal life or political activities. Robert A. Millikan, the bow-tied man on the left, is far less secure. The posthumous charges against Millikan have been against his scientific integrity and his political sympathies, and his detractors have made headway.

In 2020, Pomona College changed the name of their Robert A. Millikan Laboratory, noting Millikan’s “history of eugenics promotion,” along with his purported sexism and racism. In 2021, the California Institute of Technology, the institution that Millikan spent decades building, followed suit, renaming Millikan Hall as Caltech Hall, and discontinuing the Millikan Medal, previously the Institute’s highest honor. Citing Caltech’s precedent, the American Association of Physics Teachers (AAPT) renamed its own Millikan Medal later that same year.

Since I spend most of my time teaching physics, and since I am myself a member of the AAPT, it was the last of these name changes that rankled me the most. These allegations bothered me because I suspected that they weren’t quite fair. Read more »

How to think like Albert Einstein

by Ashutosh Jogalekar

Considered the epitome of genius, Albert Einstein appears like a wellspring of intellect gushing forth fully formed from the ground, without precedents or process. There was little in his lineage to suggest genius; his parents Hermann and Pauline, while having a pronounced aptitude for mathematics and music, gave no inkling of the off-scale progeny they would bring forth. His career itself is now the stuff of legend. In 1905, while working on physics almost as a side-project while sustaining a day job as technical patent clerk, third class, at the patent office in Bern, he published five papers that revolutionized physics and can only be compared to Isaac Newton’s burst of high creativity as he sought refuge from the plague. Among these were papers heralding his famous equation, E=mc^2, along with ones describing special relativity, Brownian motion and the basis of the photoelectric effect that cemented the particle nature of light. In one of history’s ironic episodes, it was the photoelectric effect paper rather than the one on special relativity that Einstein himself called revolutionary and that won him the 1922 Nobel Prize in physics.

But in judging Einstein’s superlative achievements, both in terms of his birth and his evolution as a physicist, it is easy to think him of him as an entirely self-made genius. Nothing could be further from the truth. Einstein stood on the proverbial shoulders of giants – Newton, Mach, Faraday, Maxwell, Lorentz, among others – men who had laid the foundations of physics for two centuries before him and who he always had effusive praise for. But quite apart from learning from his intellectual ancestry, Einstein also honed useful habits and personal qualities that enabled him to triumph in his work. Too often when we read about brilliant men and women, there’s a tendency to enshrine and emphasize pure intellect and discard the personal qualities, as if the two were cleanly separable. But the fact of the matter is that raw brilliance and qualities are like genes and culture, each feeding off of each other and nurturing each other’s growth and success.

As psychologist Angela Duckworth described in her book “Grit”, genius without effort and determination can fail, or fail to live up to its great promise at the very least. And so it was for Einstein. Which makes it a matter of curiosity at the minimum ,and more promisingly a tool for measurably enhancing the efficiency of our own more modest work, to survey the personal qualities that Einstein embodied that made him successful. So what were these? Read more »

Kurt Gödel’s Open World

by Ashutosh Jogalekar

Gödel and Einstein in Princeton (Source: Emilio Segre Visual Archives)

Two men walking in Princeton, New Jersey on a stuffy day. One shaggy-looking with unkempt hair, avuncular, wearing a hat and suspenders, looking like an old farmer. The other an elfin man, trim, owl-like, also wearing a fedora and a slim white suit, looking like a banker. The elfin man and the shaggy man used to make their way home from work every day. Passersby and motorists would strain their heads to look. Everyone knew who the shaggy man was; almost nobody knew who his elfin companion was. And yet when asked, the shaggy man would say that his own work no longer meant much to him, and the only reason he came to work was to have the privilege of walking home with the elfin man. The shaggy man was Albert Einstein. His walking companion was Kurt Gödel.

What made Gödel, a figure unknown to the public, so revered among his colleagues? The superlatives kept coming. Einstein called him the greatest logician since Aristotle. The legendary mathematician John von Neumann who was his colleague argued for his extraction from fascism-riddled Europe, writing a letter to the director of his institute saying that “Gödel is absolutely irreplaceable; he is the only mathematician about whom I dare make this assertion.” And when I made a pilgrimage to Gödel’s house during a trip to his native Vienna a few years ago, the plaque in front of the house made his claim to posterity clear: “In this house lived from 1930-1937, the great mathematician and logician Kurt Gödel. Here he discovered his famous incompleteness theorem, the most significant mathematical discovery of the twentieth century.”

The author in front of the house in Vienna where Gödel was living with his mother and brother when he proved his Incompleteness Theorems

The reason Gödel drew gasps of awe from colleagues as brilliant as Einstein and von Neumann was because he revealed a seismic fissure in the foundations of that most perfect, rational and crystal-clear of all creations – mathematics. Of all the fields of human inquiry, mathematics is considered the most exact. Unlike politics or economics, or even the more quantifiable disciplines of chemistry and physics, every question in mathematics has a definite yes or no answer. The answer to a question such as whether there is an infinitude of prime numbers leaves absolutely no room for ambiguity or error – it’s a simple yes or no (yes in this case). Not surprisingly, mathematicians around the beginning of the 20th century started thinking that every mathematical question that can be posed should have a definite yes or no answer. In addition, no mathematical question should have both answers. The first requirement was called completeness, the second one was called consistency. Read more »

Black Holes and the Curse of Beauty: When Revolutionary Physicists Turn Conservative

by Ashutosh Jogalekar

Main-qimg-da0bd0564345ac4af20890fb6dc10820-cOn September 1, 1939, the leading journal of physics in the United States, Physical Review, carried two remarkable papers. One was by a young professor of physics at Princeton University named John Wheeler and his mentor Niels Bohr. The other was by a young postdoctoral fellow at the University of California, Berkeley, Hartland Snyder, and his mentor, a slightly older professor of physics named J. Robert Oppenheimer.

The first paper described the mechanism of nuclear fission. Fission had been discovered nine months earlier by a team of physicists and chemists working in Berlin and Stockholm who found that bombarding uranium with neutrons could lead to a chain reaction with a startling release of energy. The basic reasons for the large release of energy in the process came from Einstein's famous equation, E = mc2, and were understood well. But a lot of questions remained: What was the general theory behind the process? Why did uranium split into two and not more fragments? Under what conditions would a uranium atom split? Would other elements also undergo fission?

Bohr and Wheeler answered many of these questions in their paper. Bohr had already come up with an enduring analogy for understanding the nucleus: that of a liquid drop that wobbles in all directions and is held together by surface tension until an external force that is violent enough tears it apart. But this is a classical view of the uranium nucleus. Niels Bohr had been a pioneer of quantum mechanics. From a quantum mechanical standpoint the uranium nucleus is both a particle and a wave represented as a wavefunction, a mathematical object whose manipulation allows us to calculate properties of the element. In their paper Wheeler and Bohr found that the uranium nucleus is almost perfectly poised on the cusp of classical and quantum mechanics, being described partly as a liquid drop and partly by a wavefunction. At twenty five pages the paper is a tour de force, and it paved the way for understanding many other features of fission that were critical to both peaceful and military uses of atomic energy.

The second paper, by Oppenheimer and Snyder, was not as long; only four pages. But these four pages were monumental in their importance because they described, for the first time in history, what we call black holes. The road to black holes had begun about ten years earlier when a young Indian physicist pondered the fate of white dwarfs on a long voyage by sea to England. At the ripe old age of nineteen, Subrahmanyan Chandrasekhar worked out that white dwarfs wouldn't be able to support themselves against gravity if their mass increased beyond a certain limit. A few years later in 1935, Chandrasekhar had a showdown with Arthur Eddington, one of the most famous astronomers in the world, who could not believe that nature could be so pathological as to permit gravitational collapse. Eddington was a previous revolutionary who had famously tested Einstein's theory of relativity and its prediction of starlight bending in 1919. By 1935 he had turned conservative.

Read more »

James Ensor curated by Luc Tuymans at the Royal Academy of Art, London

by Sue Hubbard

ScreenHunter_2386 Nov. 21 12.27In 1933 the Belgium artist, James Ensor, met up with Einstein, when the latter was on his way to the States, for lunch on the coast near Ostend. Walking along the beach Einstein tried to explain the theory of relativity to the bemused artist. “What do you paint?” Einstein asked. To which the painter of masks replied “Nothing”. Whether this response was existential, bombastic or simply bloody minded it's hard to say but it does illustrate something of the enigmatic complexity of one of Belgium's most celebrated artists who, despite a British father, is barely known in the UK.

That father was a bit of a wastrel and a drunkard who married beneath him and, with his Belgium wife, ran a souvenir and curiosity shop in Ostend filled with an array of parrots, exotic masks, and even a monkey. These curios were to have a profound influence on his son's later imagery, imagery that has continued to intrigue as well as baffle. Opposed to ideas of classical beauty, James Ensor was equally infuriated by any notion that an artwork might need to have a social function. An outspoken exponent of ‘the prestige of the new', he considered the greatest artistic sin to be banality. Although he'd go on to have a profound effect on Expressionism and Surrealism, the orthodoxies of Modernism held little interest for him and, when he spoke of them, it was with limited understanding. Yet he produced many stunningly original works. Now the Belgium artist, Luc Tuymans, has curated a show at the Royal Academy that brings this enigmatic artist to a wider international public.

Read more »