by Jonathan Kujawa
On “Things to Make and Do in the Fourth Dimension” by Matt Parker.
I came dangerously close to not becoming a mathematician. Like many people my experiences with math in school left me irritated and bored. I have a poor memory and I'm not a detail oriented person [1]. The arbitrary rules to be memorized and the fiddly and unforgiving nature of calculations made each homework a minefield of point-losing opportunities. And the problems! To “motivate” us with “applications” the problems were meant to be real-world, yet always seemed to involve the patently ridiculous: rectangular pastures, conical barns, spherical cows. I don't know how anyone can refer to such obviously contrived problems as “real-world” with a straight face.
Or, worse, problems were completely devoid of any motivation whatsoever. I have strong memory of having to learn how to multiply together matrices. The rules were clearly designed to maximize the number of calculations required and, hence, the chances of making a mistake. I can't imagine who thought this was a good topic for fifteen year olds. Not a word was said about why we should learn such a thing, or why anyone, anywhere should care. Oh to have known something about how matrices are used in geometry and computer graphics, or to store and manipulate data, or to compute probabilities in Markov processes. Heck, just to point out that it is an example of a “multiplication” where AB and BA are not equal would have been great start!
Of course my experience is the rule, not the exception. Paul Lockhart wrote a fantastic essay in 2002 entitled “A Mathematician's Lament” which captures the situation perfectly. It's requiring everyone to be able to read music and never letting them hear a tune, only saying it will be needed in some unspecified way as a working adult. Or teaching reading using only tax forms and TV repair manuals. Everyone with an interest in math or education should read it. You can read it here. As Lockhart writes,
…if I had to design a mechanism for the express purpose of destroying a child’s natural curiosity and love of pattern-making, I couldn’t possibly do as good a job as is currently being done— I simply wouldn’t have the imagination to come up with the kind of senseless, soul-crushing ideas that constitute contemporary mathematics education.
So how was my soul saved?
