by Paul Braterman
Scientific theories are antifragile; they thrive on anomalies.
Some things are fragile – they break. Some are robust – they can withstand harsh treatment. But the most interesting kind are antifragile, emerging strengthened and enriched from challenges. Whatever does not kill them makes them stronger. Science is as successful as it is, because science as a whole, and even individual scientific theories, are antifragile.
We owe the term “antifragile” to the financier and thinker Nassim Nicholas Taleb, author of Fooled by Randomness and Black Swan. Taleb describes his latest book, Antifragile; Things that Gain from Disorder, as the intellectual underpinning of those earlier works, since it formalises his earlier reflections. Antifragility is the true opposite of fragility. Unlike mere robustness, it is the ability to actually profit from misadventure. A porcelain cup is fragile, and shatters if dropped. A plastic cup, being robust, will not be any the worse for such an experience, but it will not be any the better for it either. Contrast the human immune system. Being antifragile, it is improved by stresses. Having been challenged by an infection, it will be primed to respond more effectively to similar challenges in the future, because it has learned to recognise the infection as an invader. There are deep connections between randomness, uncertainty, novelty, information, and learning, and natural selection in an uncertain world favours antifragile systems because they learn from experience.
Good safety systems are antifragile. Accidents will happen, and of their nature cannot always be foreseen, but each accident can be analysed retrospectively and procedures adjusted to anticipate similar challenges in the future. Moreover, experience shows that experience is more persuasive than foresight, even when the mishap itself has actually been foreseen.