Shayla Love in Tonic:
Since 2013, CRISPR has enjoyed celebrity status as the revolutionary gene-editing technology that could change everything. So you may be wondering—why haven’t you heard of gene editing actually making an impact on human disease? People might disagree on how okay it would be to choose the eye color of your offspring, but there are lots of editing applications most would agree we should try, like on devastating illnesses known to be caused by genetic mutations, such as cystic fibrosis or sickle cell anemia.
The answer, in short, is that while CRISPR is a great tool for targeting and knocking out genes, when it comes to making precise changes, it could use a little help. Now it may have gotten some. In an announcement today from Harvard, scientists say they are launching a company called Beam Therapeutics, which will be the first to pursue therapies using a new, more exact technique called base editing. It could be the first step to translating this type of gene-editing technology into treatments for human illness that are caused by small genetic mutations. As a refresher: CRISPR is a defense that some bacteria have to target and cut the DNA of invading viruses. The labs of Jennifer Doudna at UC Berkeley and Feng Zhang at MIT and the Broad Institute showed around the same time that this system could be used to cut a piece of human DNA at a desired spot. Gene editing suddenly became way easier than it used to be, and the applications were enticing: cancer treatments, malaria-free mosquitoes, and other potential cures for genetic diseases. But while the community at large debated over the ethics of editing germ line cells or designer babies, scientists were trying the possibilities a reality. “At a recent conference, it was pointed out that the field is hard at work, trying to make possible what most people—whose experience with genome editing is watching movies or reading casual pieces about the field—think is already possible,” says David Liu, the Director of the Merkin Institute for Transformative Technologies in Healthcare at at the Broad Institute of Harvard and MIT.
More here.