The New Generation of Microbe Hunters

Gina Kolata in The New York Times:

Bac The first bacterial genome was sequenced in 1995 — a triumph at the time, requiring 13 months of work. Today researchers can sequence the DNA that constitutes a micro-organism’s genome in a few days or even, with the latest equipment, a day. (Analyzing it takes a bit longer, though.) They can simultaneously get sequences of all the microbes on a tooth or in saliva or in a sample of sewage. And the cost has dropped to about $1,000 per genome, from more than $1 million. In a recent review, Dr. David A. Relman, a professor of medicine, microbiology and immunology at Stanford, wrote that researchers had published 1,554 complete bacterial genome sequences and were working on 4,800 more. They have sequences of 2,675 virus species, and within those species they have sequences for tens of thousands of strains — 40,000 strains of flu viruses, more than 300,000 strains of H.I.V., for example. With rapid genome sequencing, “we are able to look at the master blueprint of a microbe,” Dr. Relman said in a telephone interview. It is “like being given the operating manual for your car after you have been trying to trouble-shoot a problem with it for some time.”

Dr. Matthew K. Waldor of Harvard Medical School said the new technology “is changing all aspects of microbiology — it’s just transformative.” One group is starting to develop what it calls disease weather maps. The idea is to get swabs or samples from sewage treatment plants or places like subways or hospitals and quickly sequence the genomes of all the micro-organisms. That will tell them exactly what bacteria and viruses are present and how prevalent they are. With those tools, investigators can create a kind of weather map of disease patterns. And they can take precautions against ones that are starting to emerge — flu or food-borne diseases or SARS, for example, or antibiotic-resistant strains of bacteria in a hospital.

More here.