Life, for all its complexities, has a simple commonality: It spreads. Plants, animals and bacteria have colonized almost every nook and cranny of our world. But why stop there? Some scientists speculate that biological matter may have proliferated across the cosmos itself, transported from planet to planet on wayward lumps of rock and ice. This idea is known as panspermia, and it carries a profound implication: Life on Earth may not have originated on our planet. In theory, panspermia is fairly simple. Astronomers know that impacts from comets or asteroids on planets will sometimes eject debris with enough force to catapult rocks into space. Some of those space rocks will, in turn, crash into other worlds. A few rare meteorites on Earth are known to have come from Mars, likely in this fashion.
“You can imagine small astronauts sitting inside this rock, surviving the journey,” says Avi Loeb, an astrophysicist at Harvard University and director of the school’s Institute for Theory and Computation. “Microbes could potentially move from one planet to another, from Mars to Earth, from Earth to Venus.” (You may recognize Loeb’s name from his recent book Extraterrestrial: The First Sign of Intelligent Life Beyond Earth, which garnered headlines and criticism from astronomers for its claim that our solar system was recently visited by extraterrestrials.)
Loeb has authored a number of papers probing the mechanics of panspermia, looking at, among other things, how the size and speed of space objects might affect their likelihood of transferring life. While Loeb still thinks it’s more likely that life originated on Earth, he says his work has failed to rule out the possibility that it came from somewhere else in space.
More here.