Natalie Wolchover in Quanta:
In 1985, when Carl Sagan was writing the novel Contact, he needed to quickly transport his protagonist Dr. Ellie Arroway from Earth to the star Vega. He had her enter a black hole and exit light-years away, but he didn’t know if this made any sense. The Cornell University astrophysicist and television star consulted his friend Kip Thorne, a black hole expert at the California Institute of Technology (who won a Nobel Prize earlier this month). Thorne knew that Arroway couldn’t get to Vega via a black hole, which is thought to trap and destroy anything that falls in. But it occurred to him that she might make use of another kind of hole consistent with Albert Einstein’s general theory of relativity: a tunnel or “wormhole” connecting distant locations in space-time.
While the simplest theoretical wormholes immediately collapse and disappear before anything can get through, Thorne wondered whether it might be possible for an “infinitely advanced” sci-fi civilization to stabilize a wormhole long enough for something or someone to traverse it. He figured out that such a civilization could in fact line the throat of a wormhole with “exotic material” that counteracts its tendency to collapse. The material would possess negative energy, which would deflect radiation and repulse space-time apart from itself. Sagan used the trick in Contact, attributing the invention of the exotic material to an earlier, lost civilization to avoid getting into particulars. Meanwhile, those particulars enthralled Thorne, his students and many other physicists, who spent years exploring traversable wormholes and their theoretical implications. They discovered that these wormholes can serve as time machines, invoking time-travel paradoxes — evidence that exotic material is forbidden in nature.
Now, decades later, a new species of traversable wormhole has emerged, free of exotic material and full of potential for helping physicists resolve a baffling paradox about black holes.
More here.