This Man’s Immune System Got a Cancer-killing Update

Jim Kozubek in Nautilus:

Cancer-a-238William Ludwig was a 64-year-old retired corrections officer living in Bridgeton, New Jersey, in 2010, when he received a near-hopeless cancer prognosis. The Abramson Cancer Center at the University of Pennsylvania had run out of chemotherapeutic options, and Ludwig was disqualified from most clinical trials since he had three cancers at once—leukemia, lymphoma, and squamous cell skin cancer. In a later interview, the scientist Carl June described Ludwig’s condition as “Almost dead.” Alison Loren, an oncologist at Penn, had been taking care of Ludwig for five painful years. If chemotherapy is not effective early on, each new round brings diminishing returns, and it becomes more and more toxic, she told me. In Ludwig’s case, its toxic side-effects were outdoing any progress scaling back the battalions of cancer cells. The chemo was suppressing Ludwig’s immune system, since it was his immune system’s B cells, precisely the cells being targeted by the chemo treatments, that were cancerous, expanding uncontrollably in his bone marrow. An infection from an old chicken pox virus broke out in his right eye. And the cancer now appeared to be mobile, or what doctors call “motile,” riddling far-flung sites in his body. Ludwig’s skin cancer looked to Loren as if it had spread, or metastasized, from his bones.It was about that time when Loren approached Ludwig about a new arrow that doctors at Penn had in their quiver. It was an indigenous strategy, and a radical and dangerous one. “William is the most lovely, humble human being,” Loren said. “I don’t think he realized how groundbreaking this would be at the time. He was almost casual about it. He looked at me, and shrugged, ‘I’ll give it a shot.’”

In short, the Penn scientists wanted to use engineering tricks to replicate the precision targeting ability of antibodies—Y-shaped proteins that come in billions of varieties—to target a marker on Ludwig’s cancer. Antibodies normally bind to molecular markers called antigens, tagging them to be disposed of by scavenger cells. B-cells and other antigen presenting cells can also lock onto the antigen. Then other immune system cells, such as helper T-cells notice the resulting structure, lock onto it, and unleash a powerful wrath of signaling molecules called cytokines to stir up the immune response. Killer T-cells also carry out lethal attacks on microbes carrying unauthorized antigen badges. T-cells carry a powerful thwack on their own, but they’re less effective without the precision targeting of the antibodies.

More here.