Neuron transistor behaves like a brain neuron

Lisa Zyga in Phys.org:

NeurontransiResearchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented computational capabilities, such as learning and adaptation.

The researchers, S. G. Hu and coauthors at the University of Electronic Science and Technology of China and Nanyang Technological University in Singapore, have published a paper on the neuron transistor in a recent issue of Nanotechnology.

In order for a transistor to behave like a biological neuron, it must be capable of implementing neuron-like functions—in particular, weighted summation and threshold functions. These refer to a biological neuron's ability to receive weighted input signals from many other neurons, and then to sum the input values and compare them to a threshold value to determine whether or not to fire. The human brain has tens of billions of neurons, and they are constantly performing weighted summation and threshold functions many times per second that together control all of our thoughts and actions.

In the new study, the researchers constructed a neuron transistor that acts like a single neuron, capable of weighted summation and threshold functions. Instead of being made of silicon like conventional transistors, the neuron transistor is made of a two-dimensional flake of molybdenum disulfide (MoS2), which belongs to a new class of semiconductor called transition metal dichalcogenides.

More here.