Laurel Hamers in Science:
It’s one of the big mysteries of cell biology. Why do mitochondria—the oval-shaped structures that power our cells—have their own DNA, and why have they kept it when the cell itself has plenty of its own genetic material? A new study may have found an answer. Scientists think that mitochondria were once independent single-celled organisms until, more than a billion years ago, they were swallowed by larger cells. Instead of being digested, they settled down and developed a mutually beneficial relationship developed with their hosts that eventually enabled the rise of more complex life, like today’s plants and animals.
Over the years, the mitochondrial genome has shrunk. The nucleus now harbors the vast majority of the cell’s genetic material—even genes that help the mitochondria function. In humans, for instance, the mitochondrial genome contains just 37 genes, versus the nucleus’s 20,000-plus. Over time, most mitochondrial genes have jumped into the nucleus. But if those genes are mobile, why have mitochondria retained any genes at all, especially considering that mutations in some of those genes can cause rare but crippling diseases that gradually destroy patients’ brains, livers, hearts, and other key organs.
More here.