Emily Underwood in Science:
In 2010, neurobiologist Beth Stevens had completed a remarkable rise from laboratory technician to star researcher. Then 40, she was in her second year as a principal investigator at Boston Children’s Hospital with a joint faculty position at Harvard Medical School. She had a sleek, newly built lab and a team of eager postdoctoral investigators. Her credentials were impeccable, with high-profile collaborators and her name on an impressive number of papers in well-respected journals.
But like many young researchers, Stevens feared she was on the brink of scientific failure. Rather than choosing a small, manageable project, she had set her sights on tackling an ambitious, unifying hypothesis linking the brain and the immune system to explain both normal brain development and disease. Although the preliminary data she’d gathered as a postdoc at Stanford University in Palo Alto, California, were promising, their implications were still murky. “I thought, ‘What if my model is just a model, and I let all these people down?’” she says.
Stevens, along with her mentor at Stanford, Ben Barres, had proposed that brain cells called microglia prune neuronal connections during embryonic and later development in response to a signal from a branch of the immune system known as the classical complement pathway. If a glitch in the complement system causes microglia to prune too many or too few connections, called synapses, they’d hypothesized, it could lead to both developmental and degenerative disorders.
Since then, finding after finding has shored up and extended this picture.
More here.