Allison Eck in Nautilus:
Jeremy England is concerned about words—about what they mean, about the universes they contain. He avoids ones like “consciousness” and “information”; too loaded, he says. Too treacherous. When he’s searching for the right thing to say, his voice breaks a little, scattering across an octave or two before resuming a fluid sonority.
His caution is understandable. The 34-year-old assistant professor of physics at the Massachusetts Institute of Technology is the architect of a new theory called “dissipative adaption,” which has helped to explain how complex, life-like function can self-organize and emerge from simpler things, including inanimate matter. This proposition has earned England a somewhat unwelcome nickname: the next Charles Darwin. But England’s story is just as much about language as it is about biology.
There are some 6,800 unique languages in use today. Not every word translates perfectly, and meaning sometimes falls through the cracks. For instance, there is no English translation for the Japanese wabi-sabi—the idea of finding beauty in imperfection—or for the German waldeinsamkeit, the feeling of being alone in the woods.
Different fields of science, too, are languages unto themselves, and scientific explanations are sometimes just translations. “Red,” for instance, is a translation of the phrase “620-750 nanometer wavelength.” “Temperature” is a translation of “the average speed of a group of particles.” The more complex a translation, the more meaning it imparts. “Gravity” means “the geometry of spacetime.”
What about life? We think we know life when we see it. Darwin’s theory even explains how one form of life evolves into another. But what is the difference between a robin and a rock, when both obey the same physical laws? In other words, how do you say “life” in physics? Some have argued that the word is untranslatable. But maybe it simply needed the right translator.
More here.