The Trouble With Brain Science

0712OPEDlahan-master495

Gary Marcus in the NYT (image by Tim Lahan):

Different kinds of sciences call for different kinds of theories. Physicists, for example, are searching for a “grand unified theory” that integrates gravity, electromagnetism and the strong and weak nuclear forces into a neat package of equations. Whether or not they will get there, they have made considerable progress, in part because they know what they are looking for.

Biologists — neuroscientists included — can’t hope for that kind of theory. Biology isn’t elegant the way physics appears to be. The living world is bursting with variety and unpredictable complexity, because biology is the product of historical accidents, with species solving problems based on happenstance that leads them down one evolutionary road rather than another. No overarching theory of neuroscience could predict, for example, that the cerebellum (which is involved in timing and motor control) would have vastly more neurons than the prefrontal cortex (the part of the brain most associated with our advanced intelligence).

But biological complexity is only part of the challenge in figuring out what kind of theory of the brain we’re seeking. What we are really looking for is a bridge, some way of connecting two separate scientific languages — those of neuroscience and psychology.

Such bridges don’t come easily or often, maybe once in a generation, but when they do arrive, they can change everything. An example is the discovery of DNA, which allowed us to understand how genetic information could be represented and replicated in a physical structure. In one stroke, this bridge transformed biology from a mystery — in which the physical basis of life was almost entirely unknown — into a tractable if challenging set of problems, such as sequencing genes, working out the proteins that they encode and discerning the circumstances that govern their distribution in the body.

Neuroscience awaits a similar breakthrough.

More here.