The tao of modern physics

Shivaji Sondhi in The Indian Express:

ScreenHunter_406 Nov. 19 13.39In the bulk of the commentary on the discovery of the Higgs particle at CERN and the recent award of the Nobel prize to Peter Higgs and François Englert, one astonishing aspect has been largely overlooked. This discovery points to one of the most central aspects of postwar physics — its unity across domains at distances (or energies) separated by vast gulfs that have allowed ideas to jump between very different physical problems. In the case of the Higgs particle, its discovery at an energy of one hundred billion electron volts in a complicated special purpose machine is, in a mathematical sense, a precise analogue of a well-understood phenomenon in ordinary metals at an energy of a thousandth of an electron volt — one hundred trillion times lower!

Indeed, this analogy is how the puzzle underlying the Higgs particle was first solved by Philip Anderson in 1963, a year before the papers by Higgs and Englert and Robert Brout that were honoured with the Nobel. Anderson, now 89, is widely regarded as the greatest living condensed matter physicist, a maestro of the part of physics that tries to understand how the small set of subatomic forces and particles can lead to the infinite variety of the matter we see around us. He has led a spectacular career during which he picked up a Nobel in 1977 for completely different work, and could have collected at least two more.

More here. [Photo shows Philip Anderson.]