Lisa Zyga in Physorg.com:
In general, asking what happened before the Big Bang is not really considered a science question. According to Big Bang theory, time did not even exist before this point roughly 13.7 billion years ago. But now, Oxford University physicist Roger Penrose and Vahe Gurzadyan from the Yerevan Physics Institute in Armenia have found an effect in the cosmic microwave background (CMB) that allows them to “see through” the Big Bang into what came before.
The CMB is the radiation that exists everywhere in the universe, thought to be left over from when the universe was only 300,000 years old. In the early 1990s, scientists discovered that the CMB temperature has anisotropies, meaning that the temperature fluctuates at the level of about 1 part in 100,000. These fluctuations provide one of the strongest pieces of observational evidence for the Big Bang theory, since the tiny fluctuations are thought to have grown into the large-scale structures we see today. Importantly, these fluctuations are considered to be random due to the period of inflation that is thought to have occurred in the fraction of a second after the Big Bang, which made the radiation nearly uniform.
However, Penrose and Gurzadyan have now discovered concentric circles within the CMB in which the temperature variation is much lower than expected, implying that CMB anisotropies are not completely random. The scientists think that these circles stem from the results of collisions between supermassive black holes that released huge, mostly isotropic bursts of energy. The bursts have much more energy than the normal local variations in temperature. The strange part is that the scientists calculated that some of the larger of these nearly isotropic circles must have occurred before the time of the Big Bang.
The discovery doesn't suggest that there wasn't a Big Bang – rather, it supports the idea that there could have been many of them.