From Science Daily:
Despite a century of research, memory encoding in the brain has remained mysterious. Neuronal synaptic connection strengths are involved, but synaptic components are short-lived while memories last lifetimes. This suggests synaptic information is encoded and hard-wired at a deeper, finer-grained molecular scale.
In an article in the March 8 issue of the journal PLoS Computational Biology, physicists Travis Craddock and Jack Tuszynski of the University of Alberta, and anesthesiologist Stuart Hameroff of the University of Arizona demonstrate a plausible mechanism for encoding synaptic memory in microtubules, major components of the structural cytoskeleton within neurons.
Microtubules are cylindrical hexagonal lattice polymers of the protein tubulin, comprising 15 percent of total brain protein. Microtubules define neuronal architecture, regulate synapses, and are suggested to process information via interactive bit-like states of tubulin. But any semblance of a common code connecting microtubules to synaptic activity has been missing. Until now.
More here.