Where Quantum Probability Comes From

Sean Carroll in Quanta:

Ordinary physical theories tell you what a system is and how it evolves over time. Quantum mechanics does this as well, but it also comes with an entirely new set of rules, governing what happens when systems are observed or measured. Most notably, measurement outcomes cannot be predicted with perfect confidence, even in principle. The best we can do is to calculate the probability of obtaining each possible outcome, according to what’s called the Born rule: The wave function assigns an “amplitude” to each measurement outcome, and the probability of getting that result is equal to the amplitude squared. This feature is what led Albert Einstein to complain about God playing dice with the universe.

Researchers continue to argue over the best way to think about quantum mechanics. There are competing schools of thought, which are sometimes referred to as “interpretations” of quantum theory but are better thought of as distinct physical theories that give the same predictions in the regimes we have tested so far. All of them share the feature that they lean on the idea of probability in a fundamental way. Which raises the question: What is “probability,” really?

More here.