Kristin Houser in Futurism:
A pair of researchers have uncovered a potential bridge between general relativityand quantum mechanics — the two preeminent physics theories — and it could force physicists to rethink the very nature of space and time.
Albert Einstein’s theory of general relativity describes gravity as a geometric property of space and time. The more massive an object, the greater its distortion of spacetime, and that distortion is felt as gravity.
In the 1970s, physicists Stephen Hawking and Jacob Bekenstein noted a link between the surface area of black holes and their microscopic quantum structure, which determines their entropy. This marked the first realization that a connection existed between Einstein’s theory of general relativity and quantum mechanics.
Less than three decades later, theoretical physicist Juan Maldacena observed another link between between gravity and the quantum world. That connection led to the creation of a model that proposes that spacetime can be created or destroyed by changing the amount of entanglement between different surface regions of an object.
In other words, this implies that spacetime itself, at least as it is defined in models, is a product of the entanglement between objects.
To further explore this line of thinking, ChunJun Cao and Sean Carroll of the California Institute of Technology (CalTech) set out to see if they could actually derive the dynamical properties of gravity (as familiar from general relativity) using the framework in which spacetime arises out of quantum entanglement.
More here.