A Primer on the Standard Model

Matthew Buckley in the Boston Review:

ScreenHunter_1921 May. 05 18.47CERN’s Large Hadron Collider (LHC) is located in a vast tunnel along the France-Switzerland border, 27 kilometers around and 300 feet underground. It was planned, designed, and constructed through a remarkable international effort, extending over a period of nearly twenty-five years at a cost of billions of dollars. Building it required great technical innovations and incredible collaboration by thousands of people. All with the promise of finding one thing: the particle known as the Higgs boson.

After 2000, the Higgs was the only missing piece of the Standard Model of particle physics—the theory that physicists developed in the 1970s to describe the properties of the most fundamental particles of the Universe and how they interact to make up the world as we experience it. As the structure of the Standard Model came into focus, physicists knew there had to be a new kind of quantum field, but less powerful particle accelerators, such as the Tevatron at Fermilab in Illinois and CERN’s own Large Electron-Positron Collider, had failed to detect it.

Even before the LHC was built, we physicists had very high confidence the new accelerator would be able to find it. But if the LHC had not found the Higgs boson, we still would have been incredibly excited. We would have understood that our grasp of nature’s basic components and their interactions was flawed. Contrary to some depictions in popular culture, scientists love to learn that our expectations are wrong.

More here.