Unnatural Laws

Nancy Cartwright in IAI News:

SetWidth592-1334534164568From the faceless particles of fundamental physics to marshes, mountains, and rain forests, fleas, walruses and traffic jams, we are all supposed to live in a world governed by eternal, all-encompassing laws, laws discovered by the experiments of physics and encoded in its mathematical equations. This 400-year-old image of the governance of nature is today being undermined by exciting new modes of understanding across the sciences, including physics and biology, as well as, perhaps less surprisingly, in the study of society. There is order visible in the world, and invisible. But if we trust to these new ways of understanding, this need not be order by universal law. It can be local, piecemeal, and contextual – much like the world as we encounter it.

We live our everyday lives in a dappled world unlike the world of fundamental particles regimented into kinds, each just like the one beside it, mindlessly marching exactly as has forever been destined. In the everyday world the future is open, little is certain, the unexpected intrudes into the best-laid plans, everything is different from everything else, things change and develop, and different systems built in different ways give rise to different patterns. For centuries this everyday world was at odds with the scientific world governed through-and-through by immutable law. But many of the ways we do science today bring the scientific image into greater harmony with what we see every day: much of modern science understands and manipulates the world without resort to universal laws.

Consider biology, where our knowledge since World War II has made huge leaps forward and with it, our ability to put that knowledge to use. How is this knowledge encoded? A close look at the methodologies employed, especially in evolutionary biology, suggests that rather than good old-fashioned ‘proper laws’, biology offers instead laws that emerge historically, laws that are contingent and laws that admit exceptions.

More here.