From Phys.org:
Biochemists at Oregon State University have made a fundamental discovery about protein structure that sheds new light on how proteins fold, which is one of the most basic processes of life.
The findings, announced today in Science Advances, will help scientists better understand some important changes that proteins undergo. It had previously been thought to be impossible to characterize these changes, in part because the transitions are so incredibly small and fleeting.
The changes relate to how proteins convert from one observable shape to another—and they happen in less than one trillionth of a second, in molecules that are less than one millionth of an inch in size. It had been known that these changes must happen and they have been simulated by computers, but prior to this no one had ever observed how they happen.
Now they have, in part by recognizing the value of certain data collected by many researchers over the last two decades.
“Actual evidence of these transitions was hiding in plain sight all this time,” said Andrew Brereton, an OSU doctoral student and lead author on this study. “We just didn't know what to look for, and didn't understand how significant it was.”
All proteins start as linear chains of building blocks and then quickly fold to their proper shape, going through many high-energy transitions along the way. Proper folding is essential to the biological function of proteins, and when it doesn't happen correctly, protein folding diseases can be one result—such as Alzheimer's disease, Lou Gehrig's disease, amyloidosis and others.
More here.