# Why things happen

Mathias Frisch in Aeon:

{i}magine a video clip of the spreading waves played backwards. What we would see are concentrically converging waves. For some reason this second process, which is the time-reverse of the first, does not seem to occur in nature. The process of waves spreading from a source looks irreversible. And yet the underlying physical law describing the behaviour of waves – the wave equation – is as time-symmetric as any law in physics. It allows for both diverging and converging waves. So, given that the physical laws equally allow phenomena of both types, why do we frequently observe organised waves diverging from a source but never coherently converging waves?

Physicists and philosophers disagree on the correct answer to this question – which might be fine if it applied only to stones in ponds. But the problem also crops up with electromagnetic waves and the emission of light or radio waves: anywhere, in fact, that we find radiating waves. What to say about it?

On the one hand, many physicists (and some philosophers) invoke a causal principle to explain the asymmetry. Consider an antenna transmitting a radio signal. Since the source causes the signal, and since causes precede their effects, the radio waves diverge from the antenna after it is switched on simply because they are the repercussions of an initial disturbance, namely the switching on of the antenna. Imagine the time-reverse process: a radio wave steadily collapses into an antenna before the latter has been turned on. On the face of it, this conflicts with the idea of causality, because the wave would be present before its cause (the antenna) had done anything. David Griffiths, Emeritus Professor of Physics at Reed College in Oregon and the author of a widely used textbook on classical electrodynamics, favours this explanation, going so far as to call a time-asymmetric principle of causality ‘the most sacred tenet in all of physics’.

On the other hand, some physicists (and many philosophers) reject appeals to causal notions and maintain that the asymmetry ought to be explained statistically.

More here.