Chip Sebens on the Many-Interacting-Worlds Approach to Quantum Mechanics

Sean Carroll in Preposterous Universe:

ChipLowResI got to know Charles “Chip” Sebens back in 2012, when he emailed to ask if he could spend the summer at Caltech. Chip is a graduate student in the philosophy department at the University of Michigan, and like many philosophers of physics, knows the technical background behind relativity and quantum mechanics very well. Chip had funding from NSF, and I like talking to philosophers, so I said why not?

We had an extremely productive summer, focusing on our different stances toward quantum mechanics. At the time I was a casual adherent of the Everett (many-worlds) formulation, but had never thought about it carefully. Chip was skeptical, in particular because he thought there were good reasons to believe that EQM should predict equal probabilities for being on any branch of the wave function, rather than the amplitude-squared probabilities of the real-world Born Rule. Fortunately, I won, although the reason I won was mostly because Chip figured out what was going on. We ended up writing a paper explaining why the Born Rule naturally emerges from EQM under some simple assumptions. Now I have graduated from being a casual adherent to a slightly more serious one.

But that doesn’t mean Everett is right, and it’s worth looking at other formulations. Chip was good enough to accept my request that he write a guest blog post about another approach that’s been in the news lately: a “Newtonian” or “Many-Interacting-Worlds” formulation of quantum mechanics, which he has helped to pioneer.

More here.