First Universal Quantum Network Prototype Links 2 Separate Labs

Universal-quantum-network_1John Matson in Scientific American:

Quantum technologies are the way of the future, but will that future ever arrive?

Maybe so. Physicists have cleared a bit more of the path to a plausible quantum future by constructing an elementary network for exchanging and storing quantum information. The network features two all-purpose nodes that can send, receive and store quantum information, linked by a fiber-optic cable that carries it from one node to another on a single photon.

The network is only a prototype, but if it can be refined and scaled up, it could form the basis of communication channels for relaying quantum information. A group from the Max Planck Institute of Quantum Optics (M.P.Q.) in Garching, Germany, described the advance in the April 12 issue of Nature. (Scientific American is part of Nature Publishing Group.)

Quantum bits, or qubits, are at the heart of quantum information technologies. An ordinary, classical bit in everyday electronics can store one of two values: a 0 or a 1. But thanks to the indeterminacy inherent to quantum mechanics, a qubit can be in a so-called superposition, hovering undecided between 0 and 1, which adds a layer of complexity to the information it carries. Quantum computers would boast capabilities beyond the reach of even the most powerful classical supercomputers, and cryptography protocols based on the exchange of qubits would be more secure than traditional encryption methods.