The New Generation Of Molecular Tools

William McEwan at

ScreenHunter_09 Jul. 24 17.07 This afternoon I received in the post a slim FedEx envelope containing four small vials of DNA. The DNA had been synthesized according to my instructions in under three weeks, at a cost of 39 U.S. cents per base pair (the rungs adenine-thymine or guanine-cytosine in the DNA ladder). The 10 micrograms I ordered are dried, flaky, and barely visible to the naked eye, yet once I have restored them in water and made an RNA copy of this template, they will encode a virus I have designed.

My virus will be self-replicating, but only in certain tissue-culture cells; it will cause any cell it infects to glow bright green and will serve as a research tool to help me answer questions concerning antiviral immunity. I have designed my virus out of parts—some standard and often used, some particular to this virus—using sequences that hail from bacteria, bacteriophages, jellyfish, and the common cold virus. By simply putting these parts together, I have infinitely increased their usefulness. What is extraordinary is that if I had done this experiment a mere eight years ago, it would have been a world first and unthinkable on a standard research grant. A combination of cheap DNA synthesis, freely accessible databases, and our ever expanding knowledge of protein science is conspiring to permit a revolution in creating powerful molecular tools.

More here.