Mark Buchanan in Physics World:
This is how discovery works: returns on research investment do not arrive steadily and predictably, but erratically and unpredictably, in a manner akin to intellectual earthquakes. Indeed, this idea seems to be more than merely qualitative. Data on human innovation, whether in basic science or technology or business, show that developments emerge from an erratic process with wild unpredictability. For example, as physicist Didier Sornette of the ETH in Zurich and colleagues showed a few years ago, the statistics describing the gross revenues of Hollywood movies over the past 20 years does not follow normal statistics but a power-law curve — closely resembling the famous Gutenberg— Richter law for earthquakes — with a long tail for high-revenue films. A similar pattern describes the financial returns on new drugs produced by the bio-tech industry, on royalties on patents granted to universities, or stock-market returns from hi-tech start-ups.
What we know of processes with power-law dynamics is that the largest events are hugely disproportionate in their consequences. In the metaphor of Nassim Nicholas Taleb’s 2007 best seller The Black Swan, it is not the normal events, the mundane and expected “white swans” that matter the most, but the outliers, the completely unexpected “black swans”. In the context of history, think 11 September 2001 or the invention of the Web. Similarly, scientific history seems to pivot on the rare seismic shifts that no-one predicts or even has a chance of predicting, and on those utterly profound discoveries that transform worlds. They do not flow out of what the philosopher of science Thomas Kuhn called “normal science” — the paradigm-supporting and largely mechanical working out of established ideas — but from “revolutionary”, disruptive and risky science.
All of which, as Sornette has been arguing for several years, has important implications for how we think about and judge research investments. If the path to discovery is full of surprises, and if most of the gains come in just a handful of rare but exceptional events, then even judging whether a research programme is well conceived is deeply problematic. “Almost any attempt to assess research impact over a finite time”, says Sornette, “will include only a few major discoveries and hence be highly unreliable, even if there is a true long-term positive trend.”
This raises an important question: does today’s scientific culture respect this reality? Are we doing our best to let the most important and most disruptive discoveries emerge?