Have a Thermodynamically Consistent Christmas

Sean Carroll in Cosmic Variance:

ScreenHunter_14 Dec. 27 13.07 The important event this Dec. 25 isn’t celebrating the birthday of Isaac Newton or other historical figures, it’s the release of The Curious Case of Benjamin Button, a David Fincher film starring Brad Pitt and based on the story by F. Scott Fitzgerald. As you all know, it’s a story based on the device of incompatible arrows of time: Benjamin is born old and ages backwards into youth (physically, not mentally), while the rest of the world behaves normally. Some have pretended that scientific interest in the movie centers on issues of aging and longevity, but of course it’s thermodynamics and entropy that take center stage. While entropy increases and the Second Law is respected in the rest of the world, Benjamin Button’s body seems to be magically decreasing in entropy. (Which does not, strictly speaking, violate the Second Law, since his body isn’t a closed system, but it sure is weird.)

It’s a great opportunity to address an old chestnut: why do arrows of time have to be compatible? Why can’t we imagine ever discovering another galaxy in which entropy increased toward (what we call) the past instead of the future, as in Greg Egan’s story, “The Hundred Light-Year Diary”? Or why can’t a body age backwards in time?

First we need to decide what the hell we mean. Let’s put aside for the moment sticky questions about collapsing wave functions, and presume that the fundamental laws of physics are perfectly reversible. In that case, given the precise state of the entire universe (or any closed system) at any one moment in time, we can use those laws to determine what the state will be at any future time, or what it was at any past time. That’s just how awesome the laws of physics are. (Of course we don’t know the laws, nor the state of the entire universe, nor could we actually carry out the relevant calculation even if we did, but we’re doing thought experiments here.) We usually take that time to be the “initial” time, but in principle we could choose any time — and in the present context, when we’re worried about arrows of time pointing in different directions, there is no time that is initial for everything. So what we mean is: Why is it difficult/impossible to choose a state of the universe with the property that, as we evolve it forward in time, some parts of it have increasing entropy and some parts have decreasing entropy?

More here.