In the Economist:
WHAT makes a scientific revolution? Thomas Kuhn famously described it as a “paradigm shift”—the change that takes place when one idea is overtaken by another, usually through the replacement over time of the generation of scientists who adhered to an old idea with another that cleaves to a new one. These revolutions can be triggered by technological breakthroughs, such as the construction of the first telescope (which overthrew the Aristotelian idea that heavenly bodies are perfect and unchanging) and by conceptual breakthroughs such as the invention of calculus (which allowed the laws of motion to be formulated). This week, a group of computer scientists claimed that developments in their subject will trigger a scientific revolution of similar proportions in the next 15 years.
That claim is not being made lightly. Some 34 of the world’s leading biologists, physicists, chemists, Earth scientists and computer scientists, led by Stephen Emmott, of Microsoft Research in Cambridge, Britain, have spent the past eight months trying to understand how future developments in computing science might influence science as a whole. They have concluded, in a report called “Towards 2020 Science”, that computing no longer merely helps scientists with their work. Instead, its concepts, tools and theorems have become integrated into the fabric of science itself. Indeed, computer science produces “an orderly, formal framework and exploratory apparatus for other sciences,” according to George Djorgovski, an astrophysicist at the California Institute of Technology…Stephen Muggleton, the head of computational bio-informatics at Imperial College, London, has, meanwhile, taken the involvement of computers with data handling one step further. He argues they will soon play a role in formulating scientific hypotheses and designing and running experiments to test them.
Here is the report “Towards 2020 Science”.