fritz haber: science and war

Ohaberf001p1

Hydrogen and nitrogen combine only with difficulty. Since the reaction N2 + 3H2 <–> 2NH3 is reversible, you need just the right conditions to drive it forward to produce significant quantities of ammonia (NH3). If the temperature is too low, the formation of ammonia is favoured but the reaction goes slowly. If the temperature is too high, the reaction goes faster, but any ammonia produced tends to dissociate into its elements. Pressure is another relevant variable: higher than atmospheric pressures favour ammonia formation. So, if ammonia is what you want, you need very cleverly to manipulate temperature, pressure, a catalyst and the design of the reaction vessel. In 1909, the academic physical chemist Fritz Haber and the industrial metallurgical engineer Carl Bosch succeeded in doing this, and they patented the process the following year. Within four years, the process had become commercial, the foundation of a huge German-dominated industry centred on ammonia works in Oppau and, from 1917, in Leuna. Haber became famous and wealthy. The giant chemical firm Badische Anilin und Soda-Fabrik (BASF) – later folded into I.G. Farben – had been funding Haber’s research, doubling or tripling his already generous professorial salary at Karlsruhe, on the condition that he obtain company permission before publishing any details, and the terms of the BASF patent gave him 1.5 pfennigs for every kilo of ammonia produced using his process. In the last year of the war, the factories in Oppau and Leuna produced 115,000 tons, and Haber’s royalty payments were worth the present-day equivalent of about $4 million. Haber won the Nobel Prize for Chemistry in 1918; Bosch became chairman of BASF, which made huge amounts of money from the process, and he too eventually won the Nobel Prize (in 1931). All this represented an early milestone in the formation of what came to be called the military-academic-industrial complex.

more from The London Review of Books here.