What Is Life – and How Do We Search for It in Other Worlds?

Spaceref.com, purveyors of “Space news as it happens”, on the surprisingly knotty problem of determining what counts as life on other planets:

“The obvious diversity of life on Earth overlies a fundamental biochemical and genetic similarity. The three main polymers of biology—the nucleic acids, the proteins, and the polysaccarides—are built from 20 amino acids, five nucleotide bases, and a few sugars, respectively. Together with lipids and fatty acids, these are the main constituents of biomass: the hardware of life (Lehninger 1975, p 21). The DNA and RNA software of life is also common, indicating shared descent (Woese 1987). But with only one example of life—life on Earth—it is not all that surprising that we do not have a fundamental understanding of what life is. We don’t know which features of Earth life are essential and which are just accidents of history…

…The practical approach to the search for life is to determine what life needs. The simplest list is probably: energy, carbon, liquid water, and a few other elements such as nitrogen, sulfur, and phosphorus (McKay 1991). Life requires energy to maintain itself against entropy, as does any self-organizing open system. In the memorable words of Erwin Schrödinger (1945), “It feeds on negative entropy.” On Earth, the vast majority of life forms ultimately derive their energy from sunlight. The only other source of primary productivity known is chemical energy, and there are only two ecosystems known, both methanogen-based (Stevens and McKinley 1995; Chapelle et al. 2002), that rely exclusively on chemical energy (that is, they do not use sunlight or its product, oxygen). Photosynthetic organisms can use sunlight at levels below the level of sunlight at the orbit of Pluto (Ravens et al. 2000); therefore, energy is not the limitation for life.”

Full article can be found here.