From Science:
Computational neuroscience is now a mature field of research. In areas ranging from molecules to the highest brain functions, scientists use mathematical models and computer simulations to study and predict the behavior of the nervous system. Simulations are essential because the present experimental systems are too complex to allow collection of all the data. Modeling has become so powerful these days that there is no longer a one-way flow of scientific information. There is considerable intellectual exchange between modelers and experimentalists. The results produced in the simulation lab often lead to testable predictions and thus challenge other researchers to design new experiments or reanalyze their data as they try to confirm or falsify the hypotheses put forward. For this issue of Science, we invited leading computational neuroscientists, each of whom works at a different organizational level, to review the latest attempts of mathematical and computational modeling and to give us an outlook on what the future might hold in store.
Understanding the dynamics and computations of single neurons and their role within larger neural networks is at the center of neuroscience. How do single-cell properties contribute to information processing and, ultimately, behavior? What level of description is required when modeling single neurons?
More here.