obins Can Literally See Magnetic Fields, But Only if Their Vision is Sharp

RobinEd Yong over at Not Exactly Rocket Science:

Some birds can sense the Earth’s magnetic field and orientate themselves with the ease of a compass needle. This ability is a massive boon for migrating birds, keeping frequent flyers on the straight and narrow. But this incredible sense is closely tied to a more mundane one – vision. Thanks to special molecules in their retinas, birds like the European robins can literally see magnetic fields. The fields appear as patterns of light and shade, or even colour, superimposed onto what they normally see.

Katrin Stapput from Goethe University has shown that this ‘magnetoreception’ ability depends on a clear image from the right eye. If the eye is covered by a translucent frosted goggle, the birds become disorientated; if the left eye is covered, they can navigate just fine. So the robin’s vision acts as a gate for its magnetic sense. Darkness (or even murkiness) keeps the gate shut, but light opens it, allowing the internal compass to work.

The magnetic sense of birds was first discovered in robins in 1968, and its details have been teased out ever since. Years of careful research have told us that the ability depends on light and particularly on the right eye and the left half of the brain. The details still aren’t quite clear but, for now, the most likely explanation involves a molecule called cryptochrome. Cryptochrome is found in the light-sensitive cells of a bird’s retina and scientists think that it affects just how sensitive those cells are.

When cryptochrome is struck by blue light, it shifts into an active state where it has an unpaired electron – these particles normally waltz in pairs but here, they dance solo. The same thing happens in a companion molecule called FAD. Together, cryptochrome and FAD, both with unpaired electrons, are known as a “radical pair”. Magnetic fields act upon the unpaired electrons and govern how long it takes for the radical pair to revert back to their normal, inactive state. And because cryptochrome affects the sensitivity of a bird’s retina, so do magnetic fields.