From Nature:
Two neuroscientists have created a prosthesis that can partially restore the sight to blind mice. The device could eventually be developed for use in humans. More than 20 million people worldwide become blind owing to the degeneration of their retina, the thin tissue at the back of the eye that turns light into a neural signal. Only one prosthesis has been approved for treatment of the condition — it consists of an array of surgically implanted electrodes that directly stimulate the optic nerve and allow patients to discern edges and letters. Patients cannot, however, recognize faces or perform many everyday tasks.
Sheila Nirenberg, a physiologist at the Weill Medical College at Cornell University in New York thinks that the problem is at least partially down to coding. Even though the retina is as thin as tissue paper, it contains several layers of nerves that seem to encode light into neural signals. “The thing is, nobody knew the code,” she says. Without it, Nirenberg believes that visual prostheses will never be able to create images that the brain can easily recognize. Now, she and her student, Chethan Pandarinath, have come up with a code and developed a device that uses it to restore some sight in blind mice. The duo began by injecting nerve cells in the retinas of their mice with a genetically engineered virus. The virus had been designed to insert a gene that causes the cells to produce a light-sensitive protein normally found in algae. When a beam of light was then shown into the eye, the protein triggered the nerve cells to send a signal to the brain, performing a similar function to healthy rod and cone cells.
More here.